Osteoarthritis and Cartilage

Does hydroxyapatite coating of uncemented cups improve long-term survival? An analysis of 28,605 primary total hip arthroplasty procedures from the Nordic Arthroplasty Register Association (NARA)

S. Lazarinis † ‡ ‡ ‡ ‡, K.T. Mäkelä † ‡ ‡, A. Eskelinen † ‡, L. Havelin † ‡ ‡ ‡, G. Hallan † ‡ ‡ ‡ ‡ ‡ ‡ ‡, S. Overgaard † ‡ ‡ ‡ ‡, A.B. Pedersen # ‡ ‡, J. Kärholm † ‡ ‡ ‡ ‡, N.P. Hailer † ‡ ‡ ‡ ‡

Introduction

Hydroxyapatite (HA) coating of orthopaedic implants accelerates early bone ingrowth in experimental settings. Several HA-coated uncemented cups were introduced in order to improve early implant stability and to increase long-term implant survival. Due to its osteoconductive properties, HA has been suggested to improve both primary and secondary stability of orthopaedic implants, and this has been evaluated by radiostereometric analysis. The use of HA coatings on uncemented cups has a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosening as uncoated cups, thus the use of HA-coated cups have a similar risk of aseptic loosen...
arthroplasty implants has recently gained new momentum since HA is used as a carrier for antimicrobial agents.\cite{9,10,11,12}

Initial reports on HA-coated uncemented cups suggested better rotational stability and reduced incidence of radiolucent lines\cite{13,14,15,16}, with promising results after up to 10 years\cite{17,18,19,20,21}. On the other hand, some randomized controlled studies fail to show beneficial effects of HA-coating on acetabular stability with up to 18 years follow-up\cite{22,23,24}. Moreover, several publications on relatively small cohorts (up to 85 hips investigated) describe high failure rates of various cups coated with HA, which experimentally was explained by insufficient coating on grit-blasted surfaces\cite{25,26,27,28}. Furthermore, some registry studies indicate an increased risk of aseptic loosening of HA-coated cups after primary total hip arthroplasty (THA) and a slightly higher risk of isolated liner revisions of HA-coated cups used in revision THA\cite{29,30,31,32}, a phenomenon possibly attributable to third-body wear or HA delamination\cite{33,34}.

The question whether HA coating is beneficial or not is thus highly relevant and controversial\cite{35,36,37,38}. We therefore investigated long-term outcome of uncemented cups used with and without HA coating in the Nordic countries during the last 18 years. Our primary outcome was cup revision due to aseptic loosening. Secondary endpoints were cup revision for any reason and revision of any component for any reason or due to infection.

Patients and methods

Sources of data and terminology

Our data were derived from the Nordic Arthroplasty Register Association (NARA) including the years 1995–2013. Data from the Danish, Finnish, Norwegian and Swedish arthroplasty registries have been continuously merged into a common NARA database.\cite{39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130}

The level of statistical significance was set at $P<0.05$ in all analyses, and SPSS (version 23) and R (version 3.0.2) software together with the “rms” and “Epi” packages were used.\cite{37}

Characteristics of the study population

From 1995 to 2013 188,945 primary THA procedures using an uncemented cup were identified in the NARA database (Fig. 1). In order to reduce bias introduced by small numbers of cups we excluded procedures involving an uncemented cup that had been implanted less than 400 times in each country ($n=20,387$ THA)23,24. In order to rigorously define the study population we also excluded all cases performed with other than metal-on-polyethylene articulations ($n=111,593$) in order to avoid problems related to hard-on-hard bearings that could bias our findings due to inferior results of ceramic-on-ceramic or metal-on-metal articulations. We furthermore restricted the database to cups of the same design used with or without HA coating performed due to osteoarthritis, and excluded all other underlying diagnoses ($n=12,051$). Furthermore, all procedures where information on HA coating of the cup component or on type of polyethylene liner was not available were excluded ($n=14,943$). Finally, all cases where information on femoral head size was missing or head sizes other than the frequently used 28, 32 and 36 mm diameters had been recorded, were also excluded from the study ($n=1,366$). That left a total number of 28,605 THA procedures involving three different uncemented cups (Trilogy® (Zimmer), $n=20,049$; Pinnacle® (DePuy), $n=4,463$; Excede® (Biomet), $n=4,093$; see Suppl. Table V).

Results

The group of uncemented cups was larger than the group of HA-coated cups. Uncoated cups were used more frequently than the HA-coated cups within the first 5 and the last 4 years of the observation period (1995–1999 and 2010–2013), but the proportions of uncemented and HA-coated cups did not differ statistically significantly for the remaining study period (2000–2008; Suppl. Table IX). 21,391 cups (74.8%) were combined with uncemented stems, resulting in uncemented THA, and 7,214 cups (25.2%) were combined with cemented stems, resulting in classical hybrid THA (Table 1). Median follow-up for all procedures was 3.0 years.
The proportion of females was higher in the group of uncoated cups ($P < 0.001$), procedures performed in patients younger than 65 years were overrepresented in the group of HA-coated cups ($P < 0.001$), and the posterior surgical approach was more frequently used in the group of uncoated cups ($P < 0.001$, Table I). The distribution of sex and age groups within the participating countries is given in supplementary data (Suppl. Table V).

Risk of cup revision due to aseptic loosening

The unadjusted 13-year survival with the endpoint cup revision due to aseptic loosening was 97.9% (CI: 96.5–99.4) for uncoated cups and 97.8% (CI: 96.3–99.4) for HA-coated cups (Tables II and IV, Fig. 2). The adjusted risk of cup revision due to aseptic loosening did not differ between uncoated and HA-coated cups, with an HR of 0.66 (CI 0.42–1.04) for the presence of HA coating during the first 10 years, and a HR of 0.87 (CI 0.14–5.38) from year 10 to year 13 (Table II).

Additional analyses of the three cup types separately revealed similar results (Suppl. Table VI).

Risk of cup revision for any reason

The unadjusted 13-year survival with the endpoint cup revision due to any reason was similar for uncoated (92.5% [CI: 90.1–94.9]) and HA-coated (94.7% [CI: 93.2–96.3]) cups (Table II). The adjusted risk of cup revision due to any reason was lower for HA-coated cups, with an adjusted risk HR 0.8 (CI 0.7–1.0; $P = 0.04$; Table II). This effect was mainly due to a lower risk of dislocation in the group of HA-coated cups: 209 (1.2%) revisions due to dislocation were performed in THA with uncoated cups, and 70 (0.6%) for THA with HA-coated cups ($P < 0.001$). When surgical approach was added as a covariable, the adjusted risk of cup revision due to dislocation was 0.73 (CI 0.58–0.92) for HA-coated cups versus uncoated cups ($P = 0.01$; Table II).

The unadjusted 13-year survival with the endpoint cup revision due to any reason was similar for uncoated (92.5% [CI: 90.1–94.9]) and HA-coated (94.7% [CI: 93.2–96.3]) cups (Table II). The adjusted risk of cup revision due to any reason was lower for HA-coated cups, with an adjusted risk HR 0.8 (CI 0.7–1.0; $P = 0.04$; Table II). This effect was mainly due to a lower risk of dislocation in the group of HA-coated cups: 209 (1.2%) revisions due to dislocation were performed in THA with uncoated cups, and 70 (0.6%) for THA with HA-coated cups ($P < 0.001$). When surgical approach was added as a covariable, the adjusted risk of cup revision due to dislocation was 0.73 (CI 0.58–0.92) for HA-coated cups versus uncoated cups ($P = 0.01$; Table II).

Fig. 1. Flowchart demonstrating the sequential exclusion of procedures not eligible for final analysis from the database.
A Cox proportional hazards model was used to investigate the influence of HA coating adjusted for relevant covariates (age, gender, type of polyethylene liner, type of stem fixation, surgical approach and femoral head size) on the relative risk (HR) of cup revision (with 95% CIs) for any reason.

HR – Hazard ratio.

Table I

<table>
<thead>
<tr>
<th>Coating</th>
<th>Crude HR (95% CI)</th>
<th>Adjusted HR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA</td>
<td>0.9 (0.7–1.0)</td>
<td>0.7 (0.5–1.0)</td>
<td>0.05</td>
</tr>
<tr>
<td>Non-HA</td>
<td>1.0 (ref)</td>
<td>1.0 (ref)</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Endpoint: Aseptic loosening</th>
<th>Years</th>
<th>Numbers at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
<td>17,465</td>
</tr>
<tr>
<td>None</td>
<td>1</td>
<td>13,427</td>
</tr>
<tr>
<td>None</td>
<td>3</td>
<td>7,958</td>
</tr>
<tr>
<td>None</td>
<td>5</td>
<td>5,192</td>
</tr>
<tr>
<td>None</td>
<td>7</td>
<td>2,943</td>
</tr>
<tr>
<td>None</td>
<td>10</td>
<td>2,499</td>
</tr>
<tr>
<td>None</td>
<td>13</td>
<td>793</td>
</tr>
</tbody>
</table>

Table III

<table>
<thead>
<tr>
<th>Endpoint: Any reason</th>
<th>Crude HR (95% CI)</th>
<th>Adjusted HR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA</td>
<td>1.0 (ref)</td>
<td>1.0 (ref)</td>
<td>1.0</td>
</tr>
<tr>
<td>Non-HA</td>
<td>0.8 (0.7–0.9)</td>
<td>0.9 (0.7–1.0)</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Table IV

<table>
<thead>
<tr>
<th>Endpoint: Any reason</th>
<th>HA</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>10</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aseptic loosening</td>
<td></td>
<td>17,465</td>
<td>13,427</td>
<td>7,958</td>
<td>5,192</td>
<td>2,943</td>
<td>2,499</td>
<td>793</td>
</tr>
<tr>
<td></td>
<td>+ HA</td>
<td>11,138</td>
<td>9,432</td>
<td>6,106</td>
<td>3,805</td>
<td>2,499</td>
<td>793</td>
<td>82</td>
</tr>
</tbody>
</table>

A Cox proportional hazards model was used to investigate the influence of HA coating adjusted for relevant covariates (age, gender, type of polyethylene liner, type of stem fixation, surgical approach and femoral head size) on the relative risk (HR) of cup revision (with 95% CIs) for any reason.

HR – Hazard ratio.

Discussion

The presence of HA coating on uncemented cups used in primary THA performed due to osteoarthritis did not have a clinically relevant impact on the long-term risk of revision due to aseptic cup loosening. During the first 10 years the risk of cup revision due to aseptic loosening was marginally lower for HA-coated cups, but thereafter the survival curves crossed and survival of HA-coated cups was marginally worse. The risk of revision of any component was higher for HA-coated cups, but this was not statistically significant. The relative risk of cup revision was similar between the two groups (adjusted risk HR: 1.0; 95% CI: 0.8–1.2; P = 0.05; Table III).
In our material, the posterior approach dominated in the group of uncoated cups, and since the risk of dislocation is higher after the use of the posterior approach, the unadjusted risk of revision for any reason was accordingly higher in uncoated cups. This increased risk of revision for any reason in uncoated cups was attenuated when the surgical approach was added as a covariate into a multivariable regression model with this endpoint. Another factor with a profound influence on the risk of dislocation and therefore on the risk of revision for any reason is femoral head size. In our dataset, femoral head sizes were unevenly distributed between the two investigated groups of cups, but the covariate femoral head size did not statistically significantly affect the risk estimates for uncoated vs. HA-coated cups (Table III).

Unexpectedly, the risk of revision of any component due to infection was higher in THA with HA-coated cups. The observation is novel, and we cannot exclude that uncontrolled confounders may contribute to this finding. We attempted to take the effects of cement-loaded antibiotics around cemented stems into account by adjusting for the type of stem fixation, but differences in the type, dose or duration of perioperative antibiotics—a variable not included in the NARA database—may be present and cannot be accounted for. Given the renewed interest in HA as a carrier of antimicrobial agents this finding indicates that further research on the ability of bacteria to adhere to HA and their ability to form biofilm on it is necessary. It may even be that bacterial adhesion to HA-coated surfaces is enhanced.

Pro's and Con's of HA coating

Contrary to initial expectations showing reduced implant migration, subsequent investigations—both observational studies based on registry material and randomized controlled trials using radiostereometry—indicate no, minor positive or negative effects of HA coating on uncemented cup survival. In the present study, we failed to see a clinically relevant difference in cup survival between HA-coated and uncoated cups when investigating the risk of aseptic loosening, which again challenges the contention that HA improves initial stability or bony ingrowth of uncemented acetabular cups. This conclusion is in agreement with a recent meta-analysis on the topic of HA coating of acetabular cups which also found no advantage of HA-coated over uncoated cups in terms of implant survival.41

The question why HA does not improve cup survival cannot be answered on the basis of observational studies alone. Retrieval studies, however, indicate that HA particles derived from the coating can contribute to acceleration of third-body wear and osteolysis. Resorption of HA and in some cases delamination of the coating has been shown in retrieval studies of HA-coated cups. This may jeopardize the initially enhanced bone ingrowth and can contribute to adverse effects that result in polyethylene wear, osteolysis, and cup loosening.

The use of either conventional or highly cross-linked polyethylene (XLPE) is an important covariate to consider when comparing the risk of cup revision due to aseptic loosening, and liner type was therefore included as a covariate in our analyses (Table II). The combination of cups with different stem types could also distort our results due to differences in stem survival. The large number of different cup-and-stem combinations made a comprehensive analysis of the factor “stem brand” impossible, since the large number of degrees of freedom when entering individual stem types into Cox regression model resulted in meaningless estimates. As a proxy, the covariate “stem fixation” was therefore included in multivariable regression models, and we performed additional survival analyses stratified by the type of stem fixation. However, the type of stem fixation seemed not to confer any statistically significant effect on the investigated estimates (Tables II and III, Suppl. Table VIII).

Strengths and weaknesses of the study

The strengths of this study are (1) its sample size, (2) the validity of the combined NARA dataset, and (3) the comparison of presence or absence of HA coating in three different cup designs.

- Previous studies suggest relatively small effects of HA coating on the risk of aseptic loosening, and a sample size such as ours was therefore needed to address this issue. Although this—at least to our knowledge—is the largest comparison of long-term survival in uncoated and HA-coated cups, we found only small and statistically insignificant differences in terms of the risk of revision due to aseptic loosening.

- The NARA dataset is based on the combined Danish, Norwegian, Swedish and Finnish hip arthroplasty registers that have all been repeatedly validated, and the completeness of data in the four countries ranges from 86% to 99%. However, when we had applied all exclusion criteria mentioned in the methods section no cases from Finland were included in our analyses.

- A wide variety of cups with or without HA coating is available on the market, but comparisons of uncoated with HA-coated cups may be difficult since brands differ in many other parameters apart from their coating. We thus decided to only investigate cups that were available with or without HA coating, thus enabling direct comparisons of cup designs that were otherwise identical. A smaller, retrospective cohort study on cups that were identical apart from the presence or absence of HA coating was recently published, but with a much smaller sample size of n = 183.

Our study has several weaknesses. Although completeness and validity of the NARA database can be relied upon to a large extent, coding errors of variables such as implant characteristics and procedural details can occur. This is also true for information on HA coating and on femoral head size, leading to exclusion of 11,998 cases from the database (Fig. 1). This, of course, can create selection bias. Implant coding and identification may also differ between countries, but we attempted to minimize this potential source of...
error by reviewing the implant coding lists from each country and by contacting manufacturers and their representatives in the respective countries in order to reduce the risk of misclassification.

The notion that HA coating could improve cup stability may have led surgeons to choose this implant rather than the porous coated version in situations where compromised bone contact was expected, introducing confounding by indication bias to the disadvantage of HA-coated cups. However, this bias could also have been inverted if porous surfaces (that tend to be rougher than HA-coated surfaces) were more frequently used in cases where primary stability was expected to be difficult to achieve. We attempted to address this issue by excluding all other diagnoses than osteoarthritis, since this eliminates a large number of cases with dysplastic or post-traumatic arthritis where bone stock is by definition compromised.

Furthermore, some hospitals may have had only one cup type available (either HA-coated or uncoated), and underperforming units may have used only one of these two options which opens up for the presence of performance bias. We investigated three different cup designs that were used either with or without HA coating in the Nordic countries, but we cannot exclude that HA coating on other cup designs than those studied may have beneficial effects on long-term stability and prostheses survival. On the other hand, the investigated cup designs are widely used even outside the Nordic countries. One has to be cautious when generalizing our findings based on three cup types to other cup brands, but we believe that our findings do weaken the case for HA coating of uncemented acetabular cups. In our database, the Trilogy cup was by far the most frequently used cup, both with and without HA coating (Table 1), and this implant had a follow-up of 18 years, which renders additional strength to our study. Moreover, the additional sensitivity analysis that included only the Trilogy cup resulted in risk estimates that were similar to those obtained from the main analyses of all three cup types (Suppl. Table IV).

Several other confounding factors cannot be analysed in an observational study that is based on arthroplasty registry data: For instance, medication with drugs such as bisphosphonates that are known to influence bone metabolism and that can increase the risk of atypical femoral fractures and medical comorbidities such as diabetes mellitus or obesity could all affect implant survival. This restriction also applies to the investigation of the risk of infection, where the type and dosage of systemic or local antibiotic prophylaxis (in cases where stems were fixed with antibiotic-loaded cement) are important confounders that we were unable to control for.

Conclusion

In conclusion, HA coating seems to confer no clinically relevant effect on the long-term survival of certain uncemented cups used in primary THA. We attained a slightly higher risk of revision of any component due to infection in THA using HA-coated cups, a finding that has to be investigated further. Based on these findings, the use of HA as a coating of cups seems not to add value in these devices.

Authors contribution

SL: Study design, database preparation, data analysis, manuscript drafting and editing; NPH: study design, data analysis, manuscript editing; JK, KTM, SO, GH, LIH, ABP: study design, final manuscript editing.

Conflict of interest

None of the authors declares any competing interests.

Acknowledgements

We thank all Danish, Norwegian, and Swedish orthopedic surgeons and secretaries who contributed data. None of the authors declares any competing interests or funding.

Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.joca.2017.08.001.

References
